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Background: ChemCam

• The ChemCam instrument of Curiosity uses laser-induced 
breakdown spectroscopy (LIBS)

• Fires a laser at target, vaporizes rock surfaces, creating a 
plasma

• Three spectrographs divide the plasma light into 
wavelengths for chemical analysis

• The three wavelength ranges: Ultraviolet, Violet, Visible 
Near-Infrared

ChemCam spectral sample

Illustration: ChemCam firing laser

w.t.% oxide
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Background
• Regression methods (SVR, PCR, CNN) have been 

employed for calibration (prediction of the elemental 
composition of samples)

• However, labeled ChemCam samples are limited

• Focus on unsupervised learning and employ generative 
models from ChemCam analysis

• Use labels (supervised) in combination to the generative 
model to compute uncertainties related to predictions

Learning the chemical content of samples (regression results)
Castorena, J. et al., (2021). Spectr. Acta Part B: Atomic Spectroscopy

Comparison of 10 regression models
Boucher, T. F., et al., (2015). Spectr. Acta Part B: Atomic Spectroscopy

Motivation

uncertainty propagation
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Methods

• In generative modeling, any kind of observed 
dataset 𝒟, is a finite set of samples generated 
from an underlying distribution

• The goal of any generative model is to 
approximate this data distribution given access to 
the dataset 𝒟

• If we are able to learn a good generative model, 
we can use the learned model for 
downstream inference

• Perform: Sampling, density estimation, detect 
outliers, fill in incomplete data, representation 
learning  

Generative modeling

GANs

VAEs

NFs
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Methods: Normalizing flows (NF)

• Mappings 𝑓!(𝐳!"#) need to be computationally 
efficient but also expressive enough 

• NF produce tractable distributions where both 
sampling and density evaluation can be efficient and 
exact

• Compared to other approaches (VAE, GAN) NF allows 
for exact evaluation of densities and efficient 
sampling

• Parallel WaveNet1 model is currently used by Google 
Assistant to generate realistic speech

4-step flow transforming samples from a standard-normal base density to a cross-shaped target 
density (Papamakarios et. al., 2021 arXiv 1912.02762)

Transformation example

Definition: A Normalizing Flow is a transformation of a simple probability distribution (e.g., a standard normal) 
into a more complex distribution by a sequence of invertible and differentiable mappings.

1Oord, A., et al. (2018) ICML (pp. 3918-3926)
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• Let us consider a directed, latent-variable model over observed variables 𝑋 and latent variables 𝑍
• In a normalizing flow model, the mapping between 𝑍 and 𝑋, given by 𝑓𝜃: ℝ𝑛 → ℝ𝑛 is deterministic 

and invertible such that 𝑋 = 𝑓𝜃(𝑍) and 𝑍 = 𝑓𝜃−1(𝑋)

• Using change of variables, the marginal likelihood 𝑝(𝐱) is given by

𝑝𝑋(𝐱; 𝜃) = 𝑝𝑍(𝑓𝜃−1 𝐱 ) det
𝜕𝑓𝜃−1(𝐱)
𝜕𝐱

• “Normalizing”:  change of variables gives a normalized density after applying an invertible 
transformation.
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Methods: Normalizing flows (NF)

• “Flow”: invertible transformations can be composed to create more complex invertible 
transformations.



UQ for ChemCam

Outline

• Background: ChemCam data and literature review

• Motivation: Uncertainty quantification for ChemCam

• Methods: Generative modeling via normalizing flows

• Proposed approach and Results

• Discussion and Conclusions

9



UQ for ChemCam

Dimension reduction
Non-negative matrix factorization (NMF)

original space NMF
latent space

original space

• Assume random vector 𝑦 ∈ ℝ! where 𝑌 = 𝑦", . . , 𝑦# ∈ ℝ#$!
• 𝑀 = 5606 (original dimensionality)
• Decompose 𝑌 ≈ 𝑋𝑉
• 𝑋 ∈ ℝ%&#$' and V ∈ ℝ%&'$!,  𝐿 ≪ 𝑀
• 𝑋: non-negative basis matrix, 𝑉: non-negative coefficient matrix
• Optimization: Minimize the Frobenius norm between 𝑌 and 𝑋𝑉

𝑦 ∈ ℝ$ 𝑦 ∈ ℝ$
𝑥 ∈ ℝ% 10
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Normalizing flow model

Train normalizing flow model on the latent spaceLatent space dimension: 15

11

Forward flow:

Inverse flow:

Real-NVP (Real-valued non-volume preserving)

Determinant of Jacobian:

Dinh et al. (2016) Density estimation using real nvp. arXiv:1605.08803

Single coupling flow architecture

𝑥: Spectral latent variable
𝑧: Latent variable (~normal)
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Normalizing flow model

NF: generative direction
(forward flow)

𝑥: Spectral latent variable
𝑧: Latent variable (~normal)

Forward flow:

Inverse flow:

Real-NVP Dinh et al. (2016) Density estimation using real nvp. arXiv:1605.08803

𝑧~𝑁(0, 𝐼#&)

𝑥~𝑝'(𝑥)

Train normalizing flow model
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Latent space dimension: 15
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Map LIBS spectra to compositions

𝑥~𝑝!(𝑥)
w.t.% oxidesLIBS sample

Train a MLP model for each oxide

LIBS 
spectra

Elemental
composition

Architecture:

𝑅( = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆

𝑅𝑆𝑆: sum of squares of 
residuals
𝑇𝑆𝑆: total sum of 
squares

Accuracy of results

𝑣(#) = 𝜎(𝑦%𝑥 # + 𝑏)
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Uncertainty quantification via bootstrapping

Bootstrapping: Statistics resampling method that assigns measures of accuracy for any sample estimate 

For a new sample 𝐲& ∈ ℝ! we get a prediction: 𝐯) = 𝑣 ! 𝐲) + 𝑟(𝐲))

Predictions with uncertainty for 15 random samples

model
uncertainty

data
uncertainty
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Uncertainty quantification via bootstrapping

oxide # of test samples # of covered samples Coverage (%)

SiO2 139 118 86.33

TiO2 139 137 98.56

Al2O3 139 120 86.33

FeOT 139 120 86.33

MgO 139 120 86.33

CaO 139 134 96.40

Na2O 139 130 93.53

K2O 139 125 89.93

Table. Coverage results (95% confidence intervals)

Evaluation of prediction intervals

Coverage: The rate at which the actual values fall within the range of the prediction interval
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Predictions with uncertainty for novel samples 

• Samples generated by the normalizing flow model
• Real samples collected on Mars from ChemCam

Normalizing flow

ChemCam
or…

Prediction with uncertainty

Data generation

16
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Conclusions

• Generative modeling can be successfully applied to model real-world data

18

• Normalizing flow models can be efficiently constructed on latent spaces for fast 
downstream inference

• Unsupervised and supervised learning can be combined to form an uncertainty 
quantification framework
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